home *** CD-ROM | disk | FTP | other *** search
/ Interactive Algebra & Tri…f Guided Study Companion / Interactive Algebra and Trigonometry - A Self-Guided Study Companion.iso / tutor / chap_5 / 5-1-2.tut < prev    next >
Unknown  |  1996-07-25  |  9.0 KB

open in: MacOS 8.1     |     Win98     |     DOS

view JSON data     |     view as text


This file was not able to be converted.
This format is not currently supported by dexvert.

ConfidenceProgramDetectionMatch TypeSupport
1% dexvert Eclipse Tutorial (other/eclipseTutorial) ext Unsupported
1% dexvert JuggleKrazy Tutorial (other/juggleKrazyTutorial) ext Unsupported
100% file data default
100% gt2 Kopftext: 'TUTOR 06>' default (weak)



hex view
+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | 3e 23 00 00 f1 00 00 00 |TUTOR 06|>#......|
|00000010| 53 65 63 74 69 6f 6e 20 | 35 2e 31 20 20 45 78 70 |Section |5.1 Exp|
|00000020| 6f 6e 65 6e 74 69 61 6c | 20 46 75 6e 63 74 69 6f |onential| Functio|
|00000030| 6e 73 20 61 6e 64 20 54 | 68 65 69 72 20 47 72 61 |ns and T|heir Gra|
|00000040| 70 68 73 0d 0a 00 0d 0a | 00 0e 65 35 2d 31 2d 31 |phs.....|..e5-1-1|
|00000050| 0e 47 75 69 64 65 64 20 | 45 78 61 6d 70 6c 65 20 |.Guided |Example |
|00000060| 31 0f 20 20 55 73 69 6e | 67 20 61 20 43 61 6c 63 |1. Usin|g a Calc|
|00000070| 75 6c 61 74 6f 72 20 74 | 6f 20 45 76 61 6c 75 61 |ulator t|o Evalua|
|00000080| 74 65 20 45 78 70 6f 6e | 65 6e 74 69 61 6c 20 46 |te Expon|ential F|
|00000090| 75 6e 63 74 69 6f 6e 73 | 0d 0a 00 0d 0b 00 0e 65 |unctions|.......e|
|000000a0| 35 2d 31 2d 32 0e 47 75 | 69 64 65 64 20 45 78 61 |5-1-2.Gu|ided Exa|
|000000b0| 6d 70 6c 65 20 32 0f 20 | 20 49 64 65 6e 74 69 66 |mple 2. | Identif|
|000000c0| 79 69 6e 67 20 74 68 65 | 20 47 72 61 70 68 20 6f |ying the| Graph o|
|000000d0| 66 20 61 6e 20 45 78 70 | 6f 6e 65 6e 74 69 61 6c |f an Exp|onential|
|000000e0| 20 46 75 6e 63 74 69 6f | 6e 0d 0a 00 0d 0b 00 0e | Functio|n.......|
|000000f0| 65 35 2d 31 2d 33 0e 47 | 75 69 64 65 64 20 45 78 |e5-1-3.G|uided Ex|
|00000100| 61 6d 70 6c 65 20 33 0f | 20 20 53 6b 65 74 63 68 |ample 3.| Sketch|
|00000110| 69 6e 67 20 74 68 65 20 | 47 72 61 70 68 20 6f 66 |ing the |Graph of|
|00000120| 20 61 6e 20 45 78 70 6f | 6e 65 6e 74 69 61 6c 20 | an Expo|nential |
|00000130| 46 75 6e 63 74 69 6f 6e | 0d 0a 00 0d 0b 00 0e 65 |Function|.......e|
|00000140| 35 2d 31 2d 34 0e 47 75 | 69 64 65 64 20 45 78 61 |5-1-4.Gu|ided Exa|
|00000150| 6d 70 6c 65 20 34 0f 20 | 20 43 6f 6d 70 6f 75 6e |mple 4. | Compoun|
|00000160| 64 20 49 6e 74 65 72 65 | 73 74 0d 0a 00 0d 0b 00 |d Intere|st......|
|00000170| 0e 65 35 2d 31 2d 35 0e | 47 75 69 64 65 64 20 45 |.e5-1-5.|Guided E|
|00000180| 78 61 6d 70 6c 65 20 35 | 0f 20 20 41 70 70 6c 69 |xample 5|. Appli|
|00000190| 63 61 74 69 6f 6e 0d 0a | 00 0d 0b 00 0e 69 35 2d |cation..|.....i5-|
|000001a0| 31 2d 31 0e 49 6e 74 65 | 67 72 61 74 65 64 20 45 |1-1.Inte|grated E|
|000001b0| 78 61 6d 70 6c 65 20 31 | 0f 20 20 53 6b 65 74 63 |xample 1|. Sketc|
|000001c0| 68 69 6e 67 20 74 68 65 | 20 47 72 61 70 68 20 6f |hing the| Graph o|
|000001d0| 66 20 61 6e 20 45 78 70 | 6f 6e 65 6e 74 69 61 6c |f an Exp|onential|
|000001e0| 20 46 75 6e 63 74 69 6f | 6e 0d 0a 00 0d 0b 00 0e | Functio|n.......|
|000001f0| 69 35 2d 31 2d 32 0e 49 | 6e 74 65 67 72 61 74 65 |i5-1-2.I|ntegrate|
|00000200| 64 20 45 78 61 6d 70 6c | 65 20 32 0f 20 20 53 6b |d Exampl|e 2. Sk|
|00000210| 65 74 63 68 69 6e 67 20 | 74 68 65 20 47 72 61 70 |etching |the Grap|
|00000220| 68 20 6f 66 20 61 6e 20 | 45 78 70 6f 6e 65 6e 74 |h of an |Exponent|
|00000230| 69 61 6c 20 46 75 6e 63 | 74 69 6f 6e 0d 0a 00 0d |ial Func|tion....|
|00000240| 0b 00 0e 69 35 2d 31 2d | 33 0e 49 6e 74 65 67 72 |...i5-1-|3.Integr|
|00000250| 61 74 65 64 20 45 78 61 | 6d 70 6c 65 20 33 0f 20 |ated Exa|mple 3. |
|00000260| 20 53 6b 65 74 63 68 69 | 6e 67 20 74 68 65 20 47 | Sketchi|ng the G|
|00000270| 72 61 70 68 20 6f 66 20 | 61 6e 20 45 78 70 6f 6e |raph of |an Expon|
|00000280| 65 6e 74 69 61 6c 20 46 | 75 6e 63 74 69 6f 6e 0d |ential F|unction.|
|00000290| 0a 00 53 65 63 74 69 6f | 6e 20 35 2e 31 20 20 45 |..Sectio|n 5.1 E|
|000002a0| 78 70 6f 6e 65 6e 74 69 | 61 6c 20 46 75 6e 63 74 |xponenti|al Funct|
|000002b0| 69 6f 6e 73 20 61 6e 64 | 20 54 68 65 69 72 20 47 |ions and| Their G|
|000002c0| 72 61 70 68 73 0d 0b 00 | 55 73 65 20 61 20 63 61 |raphs...|Use a ca|
|000002d0| 6c 63 75 6c 61 74 6f 72 | 20 74 6f 20 65 76 61 6c |lculator| to eval|
|000002e0| 75 61 74 65 20 74 68 65 | 20 67 69 76 65 6e 20 71 |uate the| given q|
|000002f0| 75 61 6e 74 69 74 79 2e | 20 20 52 6f 75 6e 64 20 |uantity.| Round |
|00000300| 79 6f 75 72 20 61 6e 73 | 77 65 72 73 20 74 6f 20 |your ans|wers to |
|00000310| 74 68 72 65 65 0d 0a 00 | 64 65 63 69 6d 61 6c 20 |three...|decimal |
|00000320| 70 6c 61 63 65 73 2e 0d | 0a 00 20 20 20 20 20 20 |places..|.. |
|00000330| 20 20 20 2d 11 32 32 11 | 34 70 20 20 20 20 20 20 | -.22.|4p |
|00000340| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000350| 20 20 20 20 20 11 32 33 | 2f 32 0d 0b 00 11 31 28 | .23|/2....1(|
|00000360| 61 29 20 20 31 2e 36 35 | 20 20 20 20 20 20 20 20 |a) 1.65| |
|00000370| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000380| 28 62 29 20 20 11 33 65 | 20 20 20 20 20 20 20 20 |(b) .3e| |
|00000390| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000003a0| 0d 0a 00 0d 0b 00 11 31 | 13 12 31 53 4f 4c 55 54 |.......1|..1SOLUT|
|000003b0| 49 4f 4e 12 30 0d 0b 00 | 20 20 20 20 20 0d 0b 00 |ION.0...| ...|
|000003c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000003d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000003e0| 20 20 20 20 20 20 20 20 | 20 2d 11 32 32 11 34 70 | | -.22.4p|
|000003f0| 0d 0b 00 11 31 61 29 20 | 20 4f 6e 20 6d 6f 73 74 |....1a) | On most|
|00000400| 20 63 61 6c 63 75 6c 61 | 74 6f 72 73 2c 20 74 6f | calcula|tors, to|
|00000410| 20 65 76 61 6c 75 61 74 | 65 20 31 2e 36 35 20 20 | evaluat|e 1.65 |
|00000420| 20 20 77 65 20 75 73 65 | 20 74 68 65 20 66 6f 6c | we use| the fol|
|00000430| 6c 6f 77 69 6e 67 20 6b | 65 79 73 74 72 6f 6b 65 |lowing k|eystroke|
|00000440| 0d 0a 00 20 20 20 20 73 | 65 71 75 65 6e 63 65 2e |... s|equence.|
|00000450| 0d 0a 00 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |...... | |
|00000460| 20 11 34 5b 32 32 32 5d | 20 5b 32 32 32 5d 20 5b | .4[222]| [222] [|
|00000470| 32 32 32 5d 20 20 20 5b | 32 32 32 5d 20 20 20 5b |222] [|222] [|
|00000480| 32 32 32 5d 20 5b 32 32 | 32 32 32 5d 0d 0b 00 20 |222] [22|222]... |
|00000490| 20 20 20 20 20 11 31 31 | 2e 36 35 20 11 34 21 20 | .11|.65 .4! |
|000004a0| 11 31 5e 20 11 34 21 20 | 21 20 11 32 28 20 11 34 |.1^ .4! |! .2( .4|
|000004b0| 21 20 21 20 11 31 2d 20 | 11 34 21 20 11 31 32 20 |! ! .1- |.4! .12 |
|000004c0| 11 34 21 20 78 20 21 20 | 70 20 21 20 11 32 29 20 |.4! x ! |p ! .2) |
|000004d0| 11 34 21 20 21 11 32 45 | 4e 54 45 52 11 34 21 20 |.4! !.2E|NTER.4! |
|000004e0| 20 20 11 31 44 69 73 70 | 6c 61 79 3a 20 30 2e 30 | .1Disp|lay: 0.0|
|000004f0| 34 33 30 30 33 39 32 33 | 32 0d 0b 00 20 20 20 20 |43003923|2... |
|00000500| 20 20 20 20 20 20 20 11 | 34 6c 32 32 32 6a 20 6c | .|4l222j l|
|00000510| 32 32 32 6a 20 6c 32 32 | 32 6a 20 20 20 6c 32 32 |222j l22|2j l22|
|00000520| 32 6a 20 20 20 6c 32 32 | 32 6a 20 6c 32 32 32 32 |2j l22|2j l2222|
|00000530| 32 6a 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |2j | |
|00000540| 20 20 20 20 20 20 20 20 | 20 20 20 11 31 13 0d 0a | | .1...|
|00000550| 00 0d 0b 00 20 20 20 20 | 52 6f 75 6e 64 69 6e 67 |.... |Rounding|
|00000560| 20 6f 75 72 20 72 65 73 | 75 6c 74 20 74 6f 20 74 | our res|ult to t|
|00000570| 68 72 65 65 20 64 65 63 | 69 6d 61 6c 20 70 6c 61 |hree dec|imal pla|
|00000580| 63 65 73 20 77 65 20 68 | 61 76 65 20 0d 0a 00 20 |ces we h|ave ... |
|00000590| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000005a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 2d 11 32 | | -.2|
|000005b0| 32 11 34 70 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |2.4p... | |
|000005c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000005d0| 20 11 31 31 2e 36 35 20 | 20 20 20 11 34 7e 20 11 | .11.65 | .4~ .|
|000005e0| 31 30 2e 30 34 33 2e 13 | 0d 0a 00 0d 0b 00 20 20 |10.043..|...... |
|000005f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00000600| 32 33 2f 32 0d 0b 00 11 | 31 62 29 20 20 54 6f 20 |23/2....|1b) To |
|00000610| 65 76 61 6c 75 61 74 65 | 20 11 33 65 20 20 20 20 |evaluate| .3e |
|00000620| 11 31 77 65 20 77 6f 75 | 6c 64 20 75 73 65 20 74 |.1we wou|ld use t|
|00000630| 68 65 20 66 6f 6c 6c 6f | 77 69 6e 67 20 6b 65 79 |he follo|wing key|
|00000640| 73 74 72 6f 6b 65 73 2e | 0d 0a 00 20 20 20 20 20 |strokes.|... |
|00000650| 20 20 20 11 34 5b 32 32 | 5d 0d 0b 00 20 20 20 20 | .4[22|]... |
|00000660| 20 20 20 20 21 20 11 32 | 78 11 34 21 20 5b 32 32 | ! .2|x.4! [22|
|00000670| 32 5d 20 20 20 5b 32 32 | 32 5d 20 20 20 5b 32 32 |2] [22|2] [22|
|00000680| 32 5d 20 5b 32 32 32 32 | 32 5d 0d 0b 00 20 20 20 |2] [2222|2]... |
|00000690| 20 20 20 20 20 21 11 33 | 65 20 11 34 21 20 21 20 | !.3|e .4! ! |
|000006a0| 11 32 28 20 11 34 21 20 | 11 31 33 20 11 34 21 20 |.2( .4! |.13 .4! |
|000006b0| 3a 20 21 20 11 31 32 20 | 11 34 21 20 11 32 29 20 |: ! .12 |.4! .2) |
|000006c0| 11 34 21 20 21 11 32 45 | 4e 54 45 52 11 34 21 20 |.4! !.2E|NTER.4! |
|000006d0| 20 20 20 20 20 20 20 11 | 31 44 69 73 70 6c 61 79 | .|1Display|
|000006e0| 3a 20 34 2e 34 38 31 36 | 38 39 30 37 0d 0b 00 20 |: 4.4816|8907... |
|000006f0| 20 20 20 20 20 20 20 11 | 34 6c 32 32 6a 20 6c 32 | .|4l22j l2|
|00000700| 32 32 6a 20 20 20 6c 32 | 32 32 6a 20 20 20 6c 32 |22j l2|22j l2|
|00000710| 32 32 6a 20 6c 32 32 32 | 32 32 6a 20 20 20 20 20 |22j l222|22j |
|00000720| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000730| 20 20 20 20 20 20 11 31 | 0d 0a 00 0d 0a 00 20 20 | .1|...... |
|00000740| 20 20 52 6f 75 6e 64 69 | 6e 67 20 6f 75 72 20 72 | Roundi|ng our r|
|00000750| 65 73 75 6c 74 20 74 6f | 20 74 68 72 65 65 20 64 |esult to| three d|
|00000760| 65 63 69 6d 61 6c 20 70 | 6c 61 63 65 73 20 77 65 |ecimal p|laces we|
|00000770| 20 68 61 76 65 0d 0a 00 | 20 20 20 20 20 20 20 20 | have...| |
|00000780| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000790| 20 20 20 20 20 20 11 32 | 33 2f 32 0d 0b 00 20 20 | .2|3/2... |
|000007a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000007b0| 20 20 20 20 20 20 20 20 | 20 20 20 11 33 65 20 20 | | .3e |
|000007c0| 20 20 11 34 7e 20 11 31 | 34 2e 34 38 32 2e 0d 0a | .4~ .1|4.482...|
|000007d0| 00 53 65 63 74 69 6f 6e | 20 35 2e 31 20 20 45 78 |.Section| 5.1 Ex|
|000007e0| 70 6f 6e 65 6e 74 69 61 | 6c 20 46 75 6e 63 74 69 |ponentia|l Functi|
|000007f0| 6f 6e 73 20 61 6e 64 20 | 54 68 65 69 72 20 47 72 |ons and |Their Gr|
|00000800| 61 70 68 73 0d 0b 00 4d | 61 74 63 68 20 74 68 65 |aphs...M|atch the|
|00000810| 20 65 78 70 6f 6e 65 6e | 74 69 61 6c 20 66 75 6e | exponen|tial fun|
|00000820| 63 74 69 6f 6e 20 77 69 | 74 68 20 69 74 73 20 67 |ction wi|th its g|
|00000830| 72 61 70 68 2e 0d 0a 00 | 20 20 20 20 20 20 20 20 |raph....| |
|00000840| 20 20 20 20 20 11 32 78 | 20 20 20 20 20 20 20 20 | .2x| |
|00000850| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000860| 78 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |x | |
|00000870| 20 20 20 20 20 20 20 20 | 20 28 78 2d 31 29 0d 0b | | (x-1)..|
|00000880| 00 11 31 28 61 29 20 20 | 11 33 67 11 31 28 11 33 |..1(a) |.3g.1(.3|
|00000890| 78 11 31 29 20 3d 20 32 | 20 20 20 20 20 20 20 20 |x.1) = 2| |
|000008a0| 20 20 20 20 28 62 29 20 | 20 11 33 66 11 31 28 11 | (b) | .3f.1(.|
|000008b0| 33 78 11 31 29 20 3d 20 | 32 20 20 2d 20 31 20 20 |3x.1) = |2 - 1 |
|000008c0| 20 20 20 20 20 28 63 29 | 20 20 11 33 68 11 31 28 | (c)| .3h.1(|
|000008d0| 11 33 78 11 31 29 20 3d | 20 32 0d 0a 00 0d 0a 00 |.3x.1) =| 2......|
|000008e0| 20 20 49 2e 20 20 20 20 | 20 20 20 20 20 20 20 20 | I. | |
|000008f0| 20 20 20 20 20 20 20 20 | 20 20 49 49 2e 20 20 20 | | II. |
|00000900| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000910| 20 20 49 49 49 2e 0d 0a | 00 20 20 20 14 6b 36 2d | III...|. .k6-|
|00000920| 31 2d 32 61 2e 6d 14 34 | 14 39 14 34 35 14 38 14 |1-2a.m.4|.9.45.8.|
|00000930| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00000940| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 14 | | .|
|00000950| 6b 36 2d 31 2d 32 62 2e | 6d 14 32 39 14 39 14 34 |k6-1-2b.|m.29.9.4|
|00000960| 35 14 38 14 0d 0a 00 20 | 20 20 20 20 20 20 20 20 |5.8.... | |
|00000970| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000980| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000990| 20 20 20 20 20 20 20 20 | 20 20 20 20 14 6b 36 2d | | .k6-|
|000009a0| 31 2d 32 63 2e 6d 14 35 | 34 14 39 14 34 35 14 38 |1-2c.m.5|4.9.45.8|
|000009b0| 14 0d 0a 00 0d 0a 00 0d | 0a 00 0d 0a 00 0d 0a 00 |........|........|
|000009c0| 0d 0a 00 13 12 31 53 4f | 4c 55 54 49 4f 4e 12 30 |.....1SO|LUTION.0|
|000009d0| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|000009e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000009f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00000a00| 32 78 0d 0b 00 11 31 61 | 29 20 20 54 68 65 20 11 |2x....1a|) The .|
|00000a10| 33 79 11 31 2d 69 6e 74 | 65 72 63 65 70 74 20 6f |3y.1-int|ercept o|
|00000a20| 66 20 74 68 65 20 66 75 | 6e 63 74 69 6f 6e 20 11 |f the fu|nction .|
|00000a30| 33 67 11 31 28 11 33 78 | 11 31 29 20 3d 20 32 20 |3g.1(.3x|.1) = 2 |
|00000a40| 20 6f 63 63 75 72 73 20 | 61 74 20 74 68 65 20 70 | occurs |at the p|
|00000a50| 6f 69 6e 74 20 28 30 2c | 20 31 29 2e 13 0d 0a 00 |oint (0,| 1).....|
|00000a60| 20 20 20 20 53 69 6e 63 | 65 20 47 72 61 70 68 20 | Sinc|e Graph |
|00000a70| 49 49 49 20 69 73 20 74 | 68 65 20 6f 6e 6c 79 20 |III is t|he only |
|00000a80| 6f 6e 65 20 77 69 74 68 | 20 74 68 69 73 20 69 6e |one with| this in|
|00000a90| 74 65 72 63 65 70 74 2c | 20 69 74 20 6d 75 73 74 |tercept,| it must|
|00000aa0| 20 62 65 20 74 68 65 20 | 67 72 61 70 68 0d 0a 00 | be the |graph...|
|00000ab0| 20 20 20 20 6f 66 20 11 | 33 67 11 31 2e 13 0d 0a | of .|3g.1....|
|00000ac0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00000ad0| 20 20 20 20 20 20 20 11 | 32 78 20 20 20 20 20 20 | .|2x |
|00000ae0| 20 20 20 20 20 20 20 20 | 20 20 78 0d 0b 00 11 31 | | x....1|
|00000af0| 62 29 20 20 43 6f 6d 70 | 61 72 69 6e 67 20 11 33 |b) Comp|aring .3|
|00000b00| 66 11 31 28 11 33 78 11 | 31 29 20 3d 20 32 20 20 |f.1(.3x.|1) = 2 |
|00000b10| 2d 20 31 20 74 6f 20 11 | 33 67 11 31 28 11 33 78 |- 1 to .|3g.1(.3x|
|00000b20| 11 31 29 20 3d 20 32 20 | 2c 20 77 65 20 73 65 65 |.1) = 2 |, we see|
|00000b30| 20 74 68 61 74 20 11 33 | 66 11 31 28 11 33 78 11 | that .3|f.1(.3x.|
|00000b40| 31 29 20 3d 20 11 33 67 | 11 31 28 11 33 78 11 31 |1) = .3g|.1(.3x.1|
|00000b50| 29 20 2d 20 31 2e 0d 0a | 00 0d 0b 00 20 20 20 20 |) - 1...|.... |
|00000b60| 54 68 65 72 65 66 6f 72 | 65 2c 20 74 68 65 20 67 |Therefor|e, the g|
|00000b70| 72 61 70 68 20 6f 66 20 | 11 33 66 20 11 31 63 61 |raph of |.3f .1ca|
|00000b80| 6e 20 62 65 20 6f 62 74 | 61 69 6e 65 64 20 62 79 |n be obt|ained by|
|00000b90| 20 73 68 69 66 74 69 6e | 67 20 74 68 65 20 67 72 | shiftin|g the gr|
|00000ba0| 61 70 68 20 6f 66 20 11 | 33 67 20 11 31 64 6f 77 |aph of .|3g .1dow|
|00000bb0| 6e 0d 0a 00 20 20 20 20 | 6f 6e 65 20 75 6e 69 74 |n... |one unit|
|00000bc0| 2e 13 0d 0a 00 0d 0b 00 | 20 20 20 20 54 68 75 73 |........| Thus|
|00000bd0| 2c 20 77 65 20 63 68 6f | 6f 73 65 20 47 72 61 70 |, we cho|ose Grap|
|00000be0| 68 20 49 2e 13 0d 0a 00 | 0d 0b 00 20 20 20 20 20 |h I.....|... |
|00000bf0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c00| 20 11 32 28 78 2d 31 29 | 20 20 20 20 20 20 20 20 | .2(x-1)| |
|00000c10| 20 20 20 20 78 0d 0b 00 | 11 31 63 29 20 20 43 6f | x...|.1c) Co|
|00000c20| 6d 70 61 72 69 6e 67 20 | 11 33 68 11 31 28 11 33 |mparing |.3h.1(.3|
|00000c30| 78 11 31 29 20 3d 20 32 | 20 20 20 20 20 20 74 6f |x.1) = 2| to|
|00000c40| 20 11 33 67 11 31 28 11 | 33 78 11 31 29 20 3d 20 | .3g.1(.|3x.1) = |
|00000c50| 32 20 2c 20 77 65 20 73 | 65 65 20 74 68 61 74 20 |2 , we s|ee that |
|00000c60| 11 33 68 11 31 28 11 33 | 78 11 31 29 20 3d 20 11 |.3h.1(.3|x.1) = .|
|00000c70| 33 67 11 31 28 11 33 78 | 20 11 31 2d 20 31 29 2e |3g.1(.3x| .1- 1).|
|00000c80| 13 0d 0a 00 0d 0b 00 20 | 20 20 20 54 68 65 72 65 |....... | There|
|00000c90| 66 6f 72 65 2c 20 74 68 | 65 20 67 72 61 70 68 20 |fore, th|e graph |
|00000ca0| 6f 66 20 11 33 68 20 11 | 31 63 61 6e 20 62 65 20 |of .3h .|1can be |
|00000cb0| 6f 62 74 61 69 6e 65 64 | 20 62 79 20 73 68 69 66 |obtained| by shif|
|00000cc0| 74 69 6e 67 20 74 68 65 | 20 67 72 61 70 68 20 6f |ting the| graph o|
|00000cd0| 66 20 11 33 67 20 11 31 | 6f 6e 65 0d 0a 00 20 20 |f .3g .1|one... |
|00000ce0| 20 20 75 6e 69 74 20 74 | 6f 20 74 68 65 20 72 69 | unit t|o the ri|
|00000cf0| 67 68 74 2e 13 0d 0a 00 | 0d 0b 00 20 20 20 20 54 |ght.....|... T|
|00000d00| 68 75 73 2c 20 77 65 20 | 63 68 6f 6f 73 65 20 47 |hus, we |choose G|
|00000d10| 72 61 70 68 20 49 49 2e | 0d 0a 00 53 65 63 74 69 |raph II.|...Secti|
|00000d20| 6f 6e 20 35 2e 31 20 20 | 45 78 70 6f 6e 65 6e 74 |on 5.1 |Exponent|
|00000d30| 69 61 6c 20 46 75 6e 63 | 74 69 6f 6e 73 20 61 6e |ial Func|tions an|
|00000d40| 64 20 54 68 65 69 72 20 | 47 72 61 70 68 73 0d 0b |d Their |Graphs..|
|00000d50| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00000d60| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 32 2d | | .2-|
|00000d70| 78 0d 0b 00 11 31 53 6b | 65 74 63 68 20 74 68 65 |x....1Sk|etch the|
|00000d80| 20 67 72 61 70 68 20 6f | 66 20 11 33 66 11 31 28 | graph o|f .3f.1(|
|00000d90| 11 33 78 11 31 29 20 3d | 20 11 33 65 20 20 11 31 |.3x.1) =| .3e .1|
|00000da0| 2e 0d 0a 00 0d 0b 00 13 | 12 31 53 4f 4c 55 54 49 |........|.1SOLUTI|
|00000db0| 4f 4e 12 30 0d 0a 00 20 | 20 20 20 20 20 20 20 20 |ON.0... | |
|00000dc0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000dd0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|00000de0| 32 78 0d 0b 00 11 31 46 | 69 72 73 74 2c 20 77 65 |2x....1F|irst, we|
|00000df0| 20 63 6f 6e 73 69 64 65 | 72 20 74 68 65 20 67 72 | conside|r the gr|
|00000e00| 61 70 68 20 6f 66 20 11 | 33 67 11 31 28 11 33 78 |aph of .|3g.1(.3x|
|00000e10| 11 31 29 20 3d 20 11 33 | 65 20 20 11 31 61 6e 64 |.1) = .3|e .1and|
|00000e20| 20 6e 6f 74 65 20 74 68 | 61 74 20 11 33 66 11 31 | note th|at .3f.1|
|00000e30| 28 11 33 78 11 31 29 20 | 3d 20 11 33 67 11 31 28 |(.3x.1) |= .3g.1(|
|00000e40| 2d 11 33 78 11 31 29 2e | 13 0d 0a 00 0d 0b 00 54 |-.3x.1).|.......T|
|00000e50| 68 65 72 65 66 6f 72 65 | 2c 20 74 6f 20 6f 62 74 |herefore|, to obt|
|00000e60| 61 69 6e 20 74 68 65 20 | 67 72 61 70 68 20 6f 66 |ain the |graph of|
|00000e70| 20 11 33 66 11 31 2c 20 | 77 65 20 72 65 66 6c 65 | .3f.1, |we refle|
|00000e80| 63 74 20 74 68 65 20 67 | 72 61 70 68 20 6f 66 20 |ct the g|raph of |
|00000e90| 11 33 67 20 11 31 61 62 | 6f 75 74 20 74 68 65 0d |.3g .1ab|out the.|
|00000ea0| 0a 00 11 33 79 11 31 2d | 61 78 69 73 2e 0d 0a 00 |...3y.1-|axis....|
|00000eb0| 0d 0a 00 0d 0a 00 14 76 | 6b 36 2d 31 2d 36 61 2e |.......v|k6-1-6a.|
|00000ec0| 6d 14 32 37 14 31 37 14 | 35 38 14 38 14 14 76 6b |m.27.17.|58.8..vk|
|00000ed0| 36 2d 31 2d 36 62 2e 6d | 14 32 37 14 31 37 14 35 |6-1-6b.m|.27.17.5|
|00000ee0| 38 14 38 14 0d 0a 00 53 | 65 63 74 69 6f 6e 20 35 |8.8....S|ection 5|
|00000ef0| 2e 31 20 45 78 70 6f 6e | 65 6e 74 69 61 6c 20 46 |.1 Expon|ential F|
|00000f00| 75 6e 63 74 69 6f 6e 73 | 20 61 6e 64 20 54 68 65 |unctions| and The|
|00000f10| 69 72 20 47 72 61 70 68 | 73 0d 0b 00 41 20 73 75 |ir Graph|s...A su|
|00000f20| 6d 20 6f 66 20 24 31 32 | 30 30 20 69 73 20 69 6e |m of $12|00 is in|
|00000f30| 76 65 73 74 65 64 20 61 | 74 20 61 6e 20 61 6e 6e |vested a|t an ann|
|00000f40| 75 61 6c 20 70 65 72 63 | 65 6e 74 61 67 65 20 72 |ual perc|entage r|
|00000f50| 61 74 65 20 6f 66 20 38 | 25 20 66 6f 72 20 31 30 |ate of 8|% for 10|
|00000f60| 20 79 65 61 72 73 2e 0d | 0a 00 46 69 6e 64 20 74 | years..|..Find t|
|00000f70| 68 65 20 62 61 6c 61 6e | 63 65 20 11 33 41 20 11 |he balan|ce .3A .|
|00000f80| 31 77 68 65 6e 20 11 33 | 6e 20 11 31 3d 20 31 2c |1when .3|n .1= 1,|
|00000f90| 20 31 32 2c 20 33 36 35 | 2c 20 61 6e 64 20 77 68 | 12, 365|, and wh|
|00000fa0| 65 6e 20 74 68 65 20 69 | 6e 74 65 72 65 73 74 20 |en the i|nterest |
|00000fb0| 69 73 20 63 6f 6d 70 6f | 75 6e 64 65 64 0d 0a 00 |is compo|unded...|
|00000fc0| 63 6f 6e 74 69 6e 75 6f | 75 73 6c 79 2e 0d 0a 00 |continuo|usly....|
|00000fd0| 0d 0b 00 13 12 31 53 4f | 4c 55 54 49 4f 4e 12 30 |.....1SO|LUTION.0|
|00000fe0| 0d 0a 00 0d 0b 00 57 68 | 65 6e 20 74 68 65 20 69 |......Wh|en the i|
|00000ff0| 6e 74 65 72 65 73 74 20 | 69 73 20 63 6f 6d 70 6f |nterest |is compo|
|00001000| 75 6e 64 65 64 20 11 33 | 6e 20 11 31 74 69 6d 65 |unded .3|n .1time|
|00001010| 73 20 70 65 72 20 79 65 | 61 72 2c 20 74 68 65 20 |s per ye|ar, the |
|00001020| 62 61 6c 61 6e 63 65 20 | 69 73 20 67 69 76 65 6e |balance |is given|
|00001030| 20 62 79 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 | by... | |
|00001040| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001050| 20 20 20 20 20 20 20 20 | 20 20 11 32 6e 74 0d 0b | | .2nt..|
|00001060| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|00001070| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001080| 20 20 20 11 33 72 0d 0b | 00 20 20 20 20 20 20 20 | .3r..|. |
|00001090| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000010a0| 20 41 20 11 31 3d 20 11 | 33 50 11 31 28 31 20 2b | A .1= .|3P.1(1 +|
|000010b0| 20 11 34 32 11 31 29 0d | 0b 00 20 20 20 20 20 20 | .42.1).|.. |
|000010c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000010d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 33 6e 0d | | .3n.|
|000010e0| 0a 00 0d 0b 00 11 31 77 | 69 74 68 20 11 33 50 20 |......1w|ith .3P |
|000010f0| 11 31 3d 20 31 32 30 30 | 2c 20 11 33 72 20 11 31 |.1= 1200|, .3r .1|
|00001100| 3d 20 30 2e 30 38 2c 20 | 61 6e 64 20 11 33 74 20 |= 0.08, |and .3t |
|00001110| 11 31 3d 20 31 30 2e 13 | 0d 0a 00 0d 0b 00 54 68 |.1= 10..|......Th|
|00001120| 65 72 65 66 6f 72 65 2c | 20 77 65 20 6f 62 74 61 |erefore,| we obta|
|00001130| 69 6e 20 74 68 65 20 66 | 6f 6c 6c 6f 77 69 6e 67 |in the f|ollowing|
|00001140| 2e 0d 0a 00 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |....... | |
|00001150| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001160| 20 20 20 20 20 20 20 20 | 11 32 31 28 31 30 29 0d | |.21(10).|
|00001170| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00001180| 20 20 20 20 20 20 20 20 | 20 11 34 28 20 20 20 20 | | .4( |
|00001190| 11 31 30 2e 30 38 11 34 | 29 0d 0b 00 11 33 6e 20 |.10.08.4|)....3n |
|000011a0| 11 31 3d 20 31 2c 20 20 | 20 20 20 20 20 20 20 11 |.1= 1, | .|
|000011b0| 33 41 20 11 31 3d 20 31 | 32 30 30 11 34 21 11 31 |3A .1= 1|200.4!.1|
|000011c0| 31 20 2b 20 11 34 32 32 | 32 32 21 20 20 20 20 20 |1 + .422|22! |
|000011d0| 20 11 31 3d 20 24 32 35 | 39 30 2e 37 31 0d 0b 00 | .1= $25|90.71...|
|000011e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000011f0| 20 20 20 20 20 20 20 11 | 34 39 20 20 20 20 20 20 | .|49 |
|00001200| 11 31 31 20 11 34 30 20 | 20 20 20 20 20 20 20 20 |.11 .40 | |
|00001210| 20 20 20 20 20 20 20 11 | 31 13 0d 0a 00 20 20 20 | .|1.... |
|00001220| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001230| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | | .2|
|00001240| 31 32 28 31 30 29 0d 0b | 00 20 20 20 20 20 20 20 |12(10)..|. |
|00001250| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001260| 11 34 28 20 20 20 20 11 | 31 30 2e 30 38 11 34 29 |.4( .|10.08.4)|
|00001270| 0d 0b 00 11 33 6e 20 11 | 31 3d 20 31 32 2c 20 20 |....3n .|1= 12, |
|00001280| 20 20 20 20 20 20 11 33 | 41 20 11 31 3d 20 31 32 | .3|A .1= 12|
|00001290| 30 30 11 34 21 11 31 31 | 20 2b 20 11 34 32 32 32 |00.4!.11| + .4222|
|000012a0| 32 21 20 20 20 20 20 20 | 20 11 31 3d 20 24 32 36 |2! | .1= $26|
|000012b0| 36 33 2e 35 37 0d 0b 00 | 20 20 20 20 20 20 20 20 |63.57...| |
|000012c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 | | .|
|000012d0| 34 39 20 20 20 20 20 11 | 31 31 32 20 11 34 30 20 |49 .|112 .40 |
|000012e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000012f0| 20 00 0c 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | .. | |
|00001300| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001310| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001320| 20 20 20 20 20 20 20 20 | 11 31 0d 0a 00 20 20 20 | |.1... |
|00001330| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001340| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | | .2|
|00001350| 33 36 35 28 31 30 29 0d | 0b 00 20 20 20 20 20 20 |365(10).|.. |
|00001360| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001370| 20 11 34 28 20 20 20 20 | 11 31 30 2e 30 38 11 34 | .4( |.10.08.4|
|00001380| 29 0d 0b 00 11 33 6e 20 | 11 31 3d 20 33 36 35 2c |)....3n |.1= 365,|
|00001390| 20 20 20 20 20 20 20 11 | 33 41 20 11 31 3d 20 31 | .|3A .1= 1|
|000013a0| 32 30 30 11 34 21 11 31 | 31 20 2b 20 11 34 32 32 |200.4!.1|1 + .422|
|000013b0| 32 32 21 20 20 20 20 20 | 20 20 20 11 31 3d 20 24 |22! | .1= $|
|000013c0| 32 36 37 30 2e 34 32 0d | 0b 00 20 20 20 20 20 20 |2670.42.|.. |
|000013d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000013e0| 20 11 34 39 20 20 20 20 | 20 11 31 33 36 35 11 34 | .49 | .1365.4|
|000013f0| 30 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |0 | |
|00001400| 20 20 20 11 31 13 20 20 | 20 20 20 20 20 20 20 20 | .1. | |
|00001410| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001420| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001430| 20 20 20 20 20 20 20 20 | 20 20 20 20 0d 0a 00 0d | | ....|
|00001440| 0b 00 57 68 65 6e 20 74 | 68 65 20 69 6e 74 65 72 |..When t|he inter|
|00001450| 65 73 74 20 69 73 20 63 | 6f 6d 70 6f 75 6e 64 65 |est is c|ompounde|
|00001460| 64 20 63 6f 6e 74 69 6e | 75 6f 75 73 6c 79 2c 20 |d contin|uously, |
|00001470| 74 68 65 20 62 61 6c 61 | 6e 63 65 20 69 73 20 67 |the bala|nce is g|
|00001480| 69 76 65 6e 20 62 79 0d | 0a 00 0d 0b 00 20 20 20 |iven by.|..... |
|00001490| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000014a0| 20 20 20 20 20 20 20 20 | 20 11 32 72 74 0d 0b 00 | | .2rt...|
|000014b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000014c0| 20 20 20 20 20 20 11 33 | 41 20 11 31 3d 20 11 33 | .3|A .1= .3|
|000014d0| 50 65 20 20 11 31 2e 13 | 0d 0a 00 0d 0b 00 54 68 |Pe .1..|......Th|
|000014e0| 65 72 65 66 6f 72 65 2c | 20 69 6e 20 74 68 69 73 |erefore,| in this|
|000014f0| 20 63 61 73 65 20 77 65 | 20 68 61 76 65 0d 0a 00 | case we| have...|
|00001500| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |... | |
|00001510| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 30 2e 30 | | .20.0|
|00001520| 38 28 31 30 29 0d 0b 00 | 20 20 20 20 20 20 20 20 |8(10)...| |
|00001530| 20 20 20 20 20 20 20 11 | 33 41 20 11 31 3d 20 31 | .|3A .1= 1|
|00001540| 32 30 30 11 33 65 20 20 | 20 20 20 20 20 20 20 11 |200.3e | .|
|00001550| 31 3d 20 24 32 36 37 30 | 2e 36 35 2e 0d 0a 00 53 |1= $2670|.65....S|
|00001560| 65 63 74 69 6f 6e 20 35 | 2e 31 20 20 45 78 70 6f |ection 5|.1 Expo|
|00001570| 6e 65 6e 74 69 61 6c 20 | 46 75 6e 63 74 69 6f 6e |nential |Function|
|00001580| 73 20 61 6e 64 20 54 68 | 65 69 72 20 47 72 61 70 |s and Th|eir Grap|
|00001590| 68 73 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |hs... | |
|000015a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000015b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000015c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000015d0| 20 20 20 20 20 20 20 20 | 20 20 11 32 30 2e 30 30 | | .20.00|
|000015e0| 32 78 0d 0b 00 11 31 54 | 68 65 20 64 65 6d 61 6e |2x....1T|he deman|
|000015f0| 64 20 65 71 75 61 74 69 | 6f 6e 20 66 6f 72 20 61 |d equati|on for a|
|00001600| 20 63 65 72 74 61 69 6e | 20 70 72 6f 64 75 63 74 | certain| product|
|00001610| 20 69 73 20 67 69 76 65 | 6e 20 62 79 20 11 33 70 | is give|n by .3p|
|00001620| 20 11 31 3d 20 33 30 30 | 20 2d 20 30 2e 32 35 11 | .1= 300| - 0.25.|
|00001630| 33 65 20 20 20 20 20 20 | 11 32 2e 0d 0a 00 11 31 |3e |.2.....1|
|00001640| 46 69 6e 64 20 74 68 65 | 20 70 72 69 63 65 20 11 |Find the| price .|
|00001650| 33 70 20 11 31 66 6f 72 | 20 61 20 64 65 6d 61 6e |3p .1for| a deman|
|00001660| 64 20 6f 66 20 11 33 78 | 20 11 31 3d 20 31 32 30 |d of .3x| .1= 120|
|00001670| 30 20 75 6e 69 74 73 20 | 61 6e 64 20 11 33 78 20 |0 units |and .3x |
|00001680| 11 31 3d 20 31 38 30 30 | 20 75 6e 69 74 73 2e 0d |.1= 1800| units..|
|00001690| 0a 00 0d 0b 00 13 12 31 | 53 4f 4c 55 54 49 4f 4e |.......1|SOLUTION|
|000016a0| 12 30 0d 0a 00 0d 0b 00 | 4c 65 74 74 69 6e 67 20 |.0......|Letting |
|000016b0| 11 33 78 20 11 31 3d 20 | 31 32 30 30 20 69 6e 20 |.3x .1= |1200 in |
|000016c0| 74 68 65 20 64 65 6d 61 | 6e 64 20 65 71 75 61 74 |the dema|nd equat|
|000016d0| 69 6f 6e 20 77 65 20 6f | 62 74 61 69 6e 20 74 68 |ion we o|btain th|
|000016e0| 65 20 66 6f 6c 6c 6f 77 | 69 6e 67 2e 0d 0a 00 0d |e follow|ing.....|
|000016f0| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00001700| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 30 2e 30 | | .20.0|
|00001710| 30 32 28 31 32 30 30 29 | 0d 0b 00 20 20 20 20 20 |02(1200)|... |
|00001720| 20 20 20 20 20 11 33 70 | 20 11 31 3d 20 33 30 30 | .3p| .1= 300|
|00001730| 20 2d 20 30 2e 32 35 11 | 33 65 20 20 20 20 20 20 | - 0.25.|3e |
|00001740| 20 20 20 20 20 11 31 13 | 0d 0a 00 0d 0b 00 20 20 | .1.|...... |
|00001750| 20 20 20 20 20 20 20 20 | 20 20 11 34 7e 20 11 31 | | .4~ .1|
|00001760| 32 39 37 2e 32 34 13 0d | 0a 00 0d 0b 00 4c 65 74 |297.24..|.....Let|
|00001770| 74 69 6e 67 20 11 33 78 | 20 11 31 3d 20 31 38 30 |ting .3x| .1= 180|
|00001780| 30 20 69 6e 20 74 68 65 | 20 64 65 6d 61 6e 64 20 |0 in the| demand |
|00001790| 65 71 75 61 74 69 6f 6e | 20 77 65 20 6f 62 74 61 |equation| we obta|
|000017a0| 69 6e 20 74 68 65 20 66 | 6f 6c 6c 6f 77 69 6e 67 |in the f|ollowing|
|000017b0| 2e 0d 0a 00 20 20 20 20 | 20 20 20 20 20 20 0d 0b |.... | ..|
|000017c0| 00 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |. | |
|000017d0| 20 20 20 20 20 20 20 20 | 20 20 11 32 30 2e 30 30 | | .20.00|
|000017e0| 32 28 31 38 30 30 29 0d | 0b 00 20 20 20 20 20 20 |2(1800).|.. |
|000017f0| 20 20 20 20 11 33 70 20 | 11 31 3d 20 33 30 30 20 | .3p |.1= 300 |
|00001800| 2d 20 30 2e 32 35 11 33 | 65 20 20 20 20 20 20 20 |- 0.25.3|e |
|00001810| 20 20 20 20 11 31 13 0d | 0a 00 0d 0b 00 20 20 20 | .1..|..... |
|00001820| 20 20 20 20 20 20 20 20 | 20 11 34 7e 20 11 31 32 | | .4~ .12|
|00001830| 39 30 2e 38 35 13 0d 0a | 00 0d 0b 00 54 68 65 72 |90.85...|....Ther|
|00001840| 65 66 6f 72 65 2c 20 74 | 68 65 20 70 72 69 63 65 |efore, t|he price|
|00001850| 20 77 68 65 6e 20 74 68 | 65 20 64 65 6d 61 6e 64 | when th|e demand|
|00001860| 20 69 73 20 31 32 30 30 | 20 77 6f 75 6c 64 20 62 | is 1200| would b|
|00001870| 65 20 24 32 39 37 2e 32 | 34 2c 20 61 6e 64 20 74 |e $297.2|4, and t|
|00001880| 68 65 20 70 72 69 63 65 | 0d 0a 00 77 68 65 6e 20 |he price|...when |
|00001890| 74 68 65 20 64 65 6d 61 | 6e 64 20 69 73 20 31 38 |the dema|nd is 18|
|000018a0| 30 30 20 77 6f 75 6c 64 | 20 62 65 20 24 32 39 30 |00 would| be $290|
|000018b0| 2e 38 35 2e 0d 0a 00 53 | 65 63 74 69 6f 6e 20 35 |.85....S|ection 5|
|000018c0| 2e 31 20 20 45 78 70 6f | 6e 65 6e 74 69 61 6c 20 |.1 Expo|nential |
|000018d0| 46 75 6e 63 74 69 6f 6e | 73 20 61 6e 64 20 54 68 |Function|s and Th|
|000018e0| 65 69 72 20 47 72 61 70 | 68 73 0d 0b 00 20 20 20 |eir Grap|hs... |
|000018f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001900| 20 20 20 20 20 20 20 20 | 20 11 32 78 0d 0b 00 11 | | .2x....|
|00001910| 31 53 6b 65 74 63 68 20 | 74 68 65 20 67 72 61 70 |1Sketch |the grap|
|00001920| 68 20 6f 66 20 11 33 66 | 11 31 28 11 33 78 11 31 |h of .3f|.1(.3x.1|
|00001930| 29 20 3d 20 33 20 2e 0d | 0a 00 0d 0b 00 13 12 31 |) = 3 ..|.......1|
|00001940| 53 4f 4c 55 54 49 4f 4e | 12 30 0d 0a 00 0d 0b 00 |SOLUTION|.0......|
|00001950| 54 6f 20 73 6b 65 74 63 | 68 20 74 68 65 20 67 72 |To sketc|h the gr|
|00001960| 61 70 68 20 6f 66 20 11 | 33 66 11 31 2c 20 77 65 |aph of .|3f.1, we|
|00001970| 20 6d 61 6b 65 20 75 70 | 20 61 20 74 61 62 6c 65 | make up| a table|
|00001980| 20 6f 66 20 76 61 6c 75 | 65 73 20 61 73 20 73 68 | of valu|es as sh|
|00001990| 6f 77 6e 20 62 65 6c 6f | 77 2e 0d 0a 00 20 20 20 |own belo|w.... |
|000019a0| 20 20 20 20 20 20 20 20 | 20 11 34 5b 32 32 32 32 | | .4[2222|
|000019b0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|000019c0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|000019d0| 32 32 32 32 32 5d 0d 0b | 00 20 20 20 20 20 20 20 |22222]..|. |
|000019e0| 20 20 20 20 20 21 20 20 | 20 20 20 20 20 20 20 20 | ! | |
|000019f0| 20 21 20 20 20 20 20 21 | 20 20 20 20 20 21 20 20 | ! !| ! |
|00001a00| 20 20 20 21 20 20 20 20 | 20 21 20 20 20 20 20 21 | ! | ! !|
|00001a10| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 20 20 20 21 |... | !|
|00001a20| 20 20 20 11 33 78 20 20 | 20 20 20 20 20 11 34 21 | .3x | .4!|
|00001a30| 20 11 31 2d 32 20 20 11 | 34 21 20 11 31 2d 31 20 | .1-2 .|4! .1-1 |
|00001a40| 20 11 34 21 20 20 11 31 | 30 20 20 11 34 21 20 20 | .4! .1|0 .4! |
|00001a50| 11 31 31 20 20 11 34 21 | 20 20 11 31 32 20 20 11 |.11 .4!| .12 .|
|00001a60| 34 21 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |4!... | |
|00001a70| 20 21 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 | !222222|22222222|
|00001a80| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00001a90| 32 32 32 32 32 32 32 32 | 32 32 32 21 0d 0b 00 20 |22222222|222!... |
|00001aa0| 20 20 20 20 20 20 20 20 | 20 20 20 21 20 20 20 20 | | ! |
|00001ab0| 20 20 20 20 20 11 32 78 | 20 11 34 21 20 20 20 20 | .2x| .4! |
|00001ac0| 20 21 20 20 20 20 20 21 | 20 20 20 20 20 21 20 20 | ! !| ! |
|00001ad0| 20 20 20 21 20 20 20 20 | 20 21 0d 0b 00 20 20 20 | ! | !... |
|00001ae0| 20 20 20 20 20 20 20 20 | 20 21 20 11 33 66 11 31 | | ! .3f.1|
|00001af0| 28 11 33 78 11 31 29 20 | 3d 20 33 20 20 11 34 21 |(.3x.1) |= 3 .4!|
|00001b00| 20 11 31 31 2f 39 20 11 | 34 21 20 11 31 31 2f 33 | .11/9 .|4! .11/3|
|00001b10| 20 11 34 21 20 20 11 31 | 31 20 20 11 34 21 20 20 | .4! .1|1 .4! |
|00001b20| 11 31 33 20 20 11 34 21 | 20 20 11 31 39 20 20 11 |.13 .4!| .19 .|
|00001b30| 34 21 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |4!... | |
|00001b40| 20 6c 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 | l222222|22222222|
|00001b50| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00001b60| 32 32 32 32 32 32 32 32 | 32 32 32 6a 11 31 13 0d |22222222|222j.1..|
|00001b70| 0a 00 0d 0b 00 55 73 69 | 6e 67 20 74 68 65 20 70 |.....Usi|ng the p|
|00001b80| 6f 69 6e 74 73 20 72 65 | 70 72 65 73 65 6e 74 65 |oints re|presente|
|00001b90| 64 20 69 6e 20 74 68 65 | 20 74 61 62 6c 65 2c 0d |d in the| table,.|
|00001ba0| 0a 00 77 65 20 6f 62 74 | 61 69 6e 20 74 68 65 20 |..we obt|ain the |
|00001bb0| 67 72 61 70 68 20 73 68 | 6f 77 6e 20 61 74 20 74 |graph sh|own at t|
|00001bc0| 68 65 20 72 69 67 68 74 | 2e 20 20 20 20 20 20 20 |he right|. |
|00001bd0| 14 76 6b 36 2d 31 2d 33 | 61 2e 6d 14 34 37 14 32 |.vk6-1-3|a.m.47.2|
|00001be0| 30 14 35 30 14 38 14 14 | 76 6b 36 2d 31 2d 33 62 |0.50.8..|vk6-1-3b|
|00001bf0| 2e 6d 14 34 37 14 32 30 | 14 35 30 14 38 14 0d 0b |.m.47.20|.50.8...|
|00001c00| 00 14 76 6b 36 2d 31 2d | 33 63 2e 6d 14 34 37 14 |..vk6-1-|3c.m.47.|
|00001c10| 32 30 14 35 30 14 38 14 | 14 76 6b 36 2d 31 2d 33 |20.50.8.|.vk6-1-3|
|00001c20| 64 2e 6d 14 34 37 14 32 | 30 14 35 30 14 38 14 14 |d.m.47.2|0.50.8..|
|00001c30| 76 6b 36 2d 31 2d 33 65 | 2e 6d 14 34 37 14 32 30 |vk6-1-3e|.m.47.20|
|00001c40| 14 35 30 14 38 14 0d 0b | 00 14 76 6b 36 2d 31 2d |.50.8...|..vk6-1-|
|00001c50| 33 66 2e 6d 14 34 37 14 | 32 30 14 35 30 14 38 14 |3f.m.47.|20.50.8.|
|00001c60| 14 76 6b 36 2d 31 2d 33 | 67 2e 6d 14 34 37 14 32 |.vk6-1-3|g.m.47.2|
|00001c70| 30 14 35 30 14 38 14 13 | 0d 0a 00 0d 0b 00 4e 6f |0.50.8..|......No|
|00001c80| 74 65 20 74 68 61 74 20 | 74 68 65 20 67 72 61 70 |te that |the grap|
|00001c90| 68 20 69 73 20 69 6e 63 | 72 65 61 73 69 6e 67 20 |h is inc|reasing |
|00001ca0| 61 6e 64 20 68 61 73 0d | 0a 00 61 20 11 33 79 11 |and has.|..a .3y.|
|00001cb0| 31 2d 69 6e 74 65 72 63 | 65 70 74 20 61 74 20 28 |1-interc|ept at (|
|00001cc0| 30 2c 20 31 29 2e 0d 0a | 00 53 65 63 74 69 6f 6e |0, 1)...|.Section|
|00001cd0| 20 35 2e 31 20 20 45 78 | 70 6f 6e 65 6e 74 69 61 | 5.1 Ex|ponentia|
|00001ce0| 6c 20 46 75 6e 63 74 69 | 6f 6e 73 20 61 6e 64 20 |l Functi|ons and |
|00001cf0| 54 68 65 69 72 20 47 72 | 61 70 68 73 0d 0b 00 20 |Their Gr|aphs... |
|00001d00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001d10| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 28 78 2b | | .2(x+|
|00001d20| 32 29 0d 0b 00 11 31 53 | 6b 65 74 63 68 20 74 68 |2)....1S|ketch th|
|00001d30| 65 20 67 72 61 70 68 20 | 6f 66 20 11 33 66 11 31 |e graph |of .3f.1|
|00001d40| 28 11 33 78 11 31 29 20 | 3d 20 33 20 20 20 20 20 |(.3x.1) |= 3 |
|00001d50| 2e 0d 0a 00 0d 0b 00 13 | 12 31 53 4f 4c 55 54 49 |........|.1SOLUTI|
|00001d60| 4f 4e 12 30 0d 0a 00 20 | 20 20 20 20 20 20 20 20 |ON.0... | |
|00001d70| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001d80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 11 32 | | .2|
|00001d90| 78 0d 0b 00 11 31 46 69 | 72 73 74 20 77 65 20 63 |x....1Fi|rst we c|
|00001da0| 6f 6e 73 69 64 65 72 20 | 74 68 65 20 67 72 61 70 |onsider |the grap|
|00001db0| 68 20 6f 66 20 11 33 67 | 11 31 28 11 33 78 11 31 |h of .3g|.1(.3x.1|
|00001dc0| 29 20 3d 20 33 20 20 61 | 6e 64 20 6e 6f 74 65 20 |) = 3 a|nd note |
|00001dd0| 74 68 61 74 20 11 33 66 | 11 31 28 11 33 78 11 31 |that .3f|.1(.3x.1|
|00001de0| 29 20 3d 20 11 33 67 11 | 31 28 11 33 78 20 11 31 |) = .3g.|1(.3x .1|
|00001df0| 2b 20 32 29 2e 13 0d 0a | 00 0d 0b 00 54 68 65 72 |+ 2)....|....Ther|
|00001e00| 65 66 6f 72 65 2c 20 74 | 68 65 20 67 72 61 70 68 |efore, t|he graph|
|00001e10| 20 6f 66 20 11 33 66 20 | 11 31 63 61 6e 20 62 65 | of .3f |.1can be|
|00001e20| 20 6f 62 74 61 69 6e 65 | 64 20 62 79 20 73 68 69 | obtaine|d by shi|
|00001e30| 66 74 69 6e 67 20 74 68 | 65 20 67 72 61 70 68 20 |fting th|e graph |
|00001e40| 6f 66 20 11 33 67 20 11 | 31 74 77 6f 20 75 6e 69 |of .3g .|1two uni|
|00001e50| 74 73 0d 0a 00 0d 0b 00 | 74 6f 20 74 68 65 20 6c |ts......|to the l|
|00001e60| 65 66 74 2e 0d 0a 00 0d | 0a 00 14 76 6b 36 2d 31 |eft.....|...vk6-1|
|00001e70| 2d 34 61 2e 6d 14 32 36 | 14 31 39 14 35 30 14 38 |-4a.m.26|.19.50.8|
|00001e80| 14 14 76 6b 36 2d 31 2d | 34 62 2e 6d 14 32 36 14 |..vk6-1-|4b.m.26.|
|00001e90| 31 39 14 35 30 14 38 14 | 14 76 6b 36 2d 31 2d 34 |19.50.8.|.vk6-1-4|
|00001ea0| 63 2e 6d 14 32 36 14 31 | 39 14 35 30 14 38 14 14 |c.m.26.1|9.50.8..|
|00001eb0| 76 6b 36 2d 31 2d 34 64 | 2e 6d 14 32 36 14 31 39 |vk6-1-4d|.m.26.19|
|00001ec0| 14 35 30 14 38 14 0d 0a | 00 0d 0a 00 53 65 63 74 |.50.8...|....Sect|
|00001ed0| 69 6f 6e 20 35 2e 31 20 | 20 45 78 70 6f 6e 65 6e |ion 5.1 | Exponen|
|00001ee0| 74 69 61 6c 20 46 75 6e | 63 74 69 6f 6e 73 20 61 |tial Fun|ctions a|
|00001ef0| 6e 64 20 54 68 65 69 72 | 20 47 72 61 70 68 73 0d |nd Their| Graphs.|
|00001f00| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00001f10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001f20| 11 32 32 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |.22... | |
|00001f30| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001f40| 20 20 2d 78 0d 0b 00 11 | 31 53 6b 65 74 63 68 20 | -x....|1Sketch |
|00001f50| 74 68 65 20 67 72 61 70 | 68 20 6f 66 20 11 33 66 |the grap|h of .3f|
|00001f60| 11 31 28 11 33 78 11 31 | 29 20 3d 20 33 20 20 2e |.1(.3x.1|) = 3 .|
|00001f70| 0d 0a 00 0d 0a 00 13 12 | 31 53 4f 4c 55 54 49 4f |........|1SOLUTIO|
|00001f80| 4e 12 30 0d 0a 00 0d 0b | 00 46 69 72 73 74 2c 20 |N.0.....|.First, |
|00001f90| 77 65 20 6e 6f 74 65 20 | 74 68 61 74 20 74 68 65 |we note |that the|
|00001fa0| 20 67 72 61 70 68 20 6f | 66 20 11 33 66 20 11 31 | graph o|f .3f .1|
|00001fb0| 69 73 20 73 79 6d 6d 65 | 74 72 69 63 20 77 69 74 |is symme|tric wit|
|00001fc0| 68 20 72 65 73 70 65 63 | 74 20 74 6f 20 74 68 65 |h respec|t to the|
|00001fd0| 20 11 33 79 11 31 2d 61 | 78 69 73 0d 0a 00 0d 0b | .3y.1-a|xis.....|
|00001fe0| 00 62 65 63 61 75 73 65 | 20 0d 0b 00 20 20 20 20 |.because| ... |
|00001ff0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002000| 20 20 20 20 20 20 20 20 | 20 20 20 11 32 32 20 20 | | .22 |
|00002010| 20 20 20 32 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | 2... | |
|00002020| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002030| 20 2d 28 2d 78 29 20 20 | 20 20 2d 78 0d 0b 00 20 | -(-x) | -x... |
|00002040| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002050| 11 33 66 11 31 28 2d 11 | 33 78 11 31 29 20 3d 20 |.3f.1(-.|3x.1) = |
|00002060| 33 20 20 20 20 20 20 3d | 20 33 20 20 20 3d 20 11 |3 =| 3 = .|
|00002070| 33 66 11 31 28 11 33 78 | 11 31 29 2e 13 0d 0a 00 |3f.1(.3x|.1).....|
|00002080| 0d 0b 00 55 73 69 6e 67 | 20 74 68 69 73 20 73 79 |...Using| this sy|
|00002090| 6d 6d 65 74 72 79 20 61 | 6e 64 20 61 20 74 61 62 |mmetry a|nd a tab|
|000020a0| 6c 65 20 6f 66 20 76 61 | 6c 75 65 73 2c 20 77 65 |le of va|lues, we|
|000020b0| 20 6f 62 74 61 69 6e 0d | 0a 00 0d 0b 00 74 68 65 | obtain.|.....the|
|000020c0| 20 66 6f 6c 6c 6f 77 69 | 6e 67 20 67 72 61 70 68 | followi|ng graph|
|000020d0| 2e 0d 0a 00 0d 0b 00 20 | 11 34 5b 32 32 32 32 32 |....... |.4[22222|
|000020e0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|000020f0| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00002100| 32 32 32 5d 0d 0b 00 20 | 21 20 20 20 20 20 20 21 |222]... |! !|
|00002110| 20 20 20 20 20 21 20 20 | 20 20 20 20 21 20 20 20 | ! | ! |
|00002120| 20 20 20 21 20 20 20 20 | 20 20 21 20 20 20 20 20 | ! | ! |
|00002130| 20 21 0d 0b 00 20 21 20 | 20 20 11 33 78 20 20 11 | !... ! | .3x .|
|00002140| 34 21 20 20 11 31 30 20 | 20 11 34 21 20 11 31 30 |4! .10 | .4! .10|
|00002150| 2e 35 20 20 11 34 21 20 | 11 31 31 2e 30 20 20 11 |.5 .4! |.11.0 .|
|00002160| 34 21 20 11 31 31 2e 35 | 20 20 11 34 21 20 11 31 |4! .11.5| .4! .1|
|00002170| 32 2e 30 20 20 11 34 21 | 0d 0b 00 20 21 32 32 32 |2.0 .4!|... !222|
|00002180| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00002190| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|000021a0| 32 32 32 32 32 21 0d 0b | 00 20 21 20 20 20 20 20 |22222!..|. ! |
|000021b0| 20 21 20 20 20 20 20 21 | 20 20 20 20 20 20 21 20 | ! !| ! |
|000021c0| 20 20 20 20 20 21 20 20 | 20 20 20 20 21 20 20 20 | ! | ! |
|000021d0| 20 20 20 21 0d 0b 00 20 | 21 20 11 33 66 11 31 28 | !... |! .3f.1(|
|000021e0| 11 33 78 11 31 29 20 11 | 34 21 20 20 11 31 31 20 |.3x.1) .|4! .11 |
|000021f0| 20 11 34 21 20 11 31 30 | 2e 37 36 20 11 34 21 20 | .4! .10|.76 .4! |
|00002200| 11 31 30 2e 33 33 20 11 | 34 21 20 11 31 30 2e 30 |.10.33 .|4! .10.0|
|00002210| 38 20 11 34 21 20 11 31 | 30 2e 30 31 20 11 34 21 |8 .4! .1|0.01 .4!|
|00002220| 20 20 20 20 20 20 20 0d | 0b 00 20 6c 32 32 32 32 | .|.. l2222|
|00002230| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00002240| 32 32 32 32 32 32 32 32 | 32 32 32 32 32 32 32 32 |22222222|22222222|
|00002250| 32 32 32 32 6a 20 20 20 | 20 20 20 20 11 31 14 76 |2222j | .1.v|
|00002260| 6b 36 2d 31 2d 35 61 2e | 6d 14 35 30 14 32 33 14 |k6-1-5a.|m.50.23.|
|00002270| 35 30 14 38 14 14 76 6b | 36 2d 31 2d 35 62 2e 6d |50.8..vk|6-1-5b.m|
|00002280| 14 35 30 14 32 33 14 35 | 30 14 38 14 0d 0b 00 14 |.50.23.5|0.8.....|
|00002290| 76 6b 36 2d 31 2d 35 63 | 2e 6d 14 35 30 14 32 33 |vk6-1-5c|.m.50.23|
|000022a0| 14 35 30 14 38 14 14 76 | 6b 36 2d 31 2d 35 64 2e |.50.8..v|k6-1-5d.|
|000022b0| 6d 14 35 30 14 32 33 14 | 35 30 14 38 14 14 76 6b |m.50.23.|50.8..vk|
|000022c0| 36 2d 31 2d 35 65 2e 6d | 14 35 30 14 32 33 14 35 |6-1-5e.m|.50.23.5|
|000022d0| 30 14 38 14 14 76 6b 36 | 2d 31 2d 35 66 2e 6d 14 |0.8..vk6|-1-5f.m.|
|000022e0| 35 30 14 32 33 14 35 30 | 14 38 14 0d 0b 00 14 76 |50.23.50|.8.....v|
|000022f0| 6b 36 2d 31 2d 35 67 2e | 6d 14 35 30 14 32 33 14 |k6-1-5g.|m.50.23.|
|00002300| 35 30 14 38 14 14 76 6b | 36 2d 31 2d 35 68 2e 6d |50.8..vk|6-1-5h.m|
|00002310| 14 35 30 14 32 33 14 35 | 30 14 38 14 20 20 20 20 |.50.23.5|0.8. |
|00002320| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00002330| 20 20 20 20 20 20 20 20 | 20 20 20 0d 0a 00 43 00 | | ...C.|
|00002340| 00 00 4f 02 00 00 4d 33 | 00 00 10 00 00 00 00 00 |..O...M3|........|
|00002350| 00 00 65 35 2d 31 00 c5 | 02 00 00 0c 05 00 00 4d |..e5-1..|.......M|
|00002360| 33 00 00 92 02 00 00 00 | 00 00 00 65 35 2d 31 2d |3.......|...e5-1-|
|00002370| 31 00 04 08 00 00 17 05 | 00 00 4d 33 00 00 d1 07 |1.......|..M3....|
|00002380| 00 00 00 00 00 00 65 35 | 2d 31 2d 32 00 4e 0d 00 |......e5|-1-2.N..|
|00002390| 00 99 01 00 00 4d 33 00 | 00 1b 0d 00 00 00 00 00 |.....M3.|........|
|000023a0| 00 65 35 2d 31 2d 33 00 | 19 0f 00 00 46 06 00 00 |.e5-1-3.|....F...|
|000023b0| 4d 32 00 00 e7 0e 00 00 | 00 00 00 00 65 35 2d 31 |M2......|....e5-1|
|000023c0| 2d 34 00 92 15 00 00 25 | 03 00 00 4d 33 00 00 5f |-4.....%|...M3.._|
|000023d0| 15 00 00 00 00 00 00 65 | 35 2d 31 2d 35 00 ea 18 |.......e|5-1-5...|
|000023e0| 00 00 df 03 00 00 4d 33 | 00 00 b7 18 00 00 00 00 |......M3|........|
|000023f0| 00 00 69 35 2d 31 2d 31 | 00 fc 1c 00 00 d0 01 00 |..i5-1-1|........|
|00002400| 00 4d 33 00 00 c9 1c 00 | 00 00 00 00 00 69 35 2d |.M3.....|.....i5-|
|00002410| 31 2d 32 00 ff 1e 00 00 | 3f 04 00 00 4d 33 00 00 |1-2.....|?...M3..|
|00002420| cc 1e 00 00 00 00 00 00 | 69 35 2d 31 2d 33 00 |........|i5-1-3. |
+--------+-------------------------+-------------------------+--------+--------+